

Giovanni Henrique Silva Oliveira

DEVELOPMENT OF A MESSAGE BROKER

VOLUME 1

Internship Report in the context of the Masters in Informatics Engineering, Specialization
in Engenharia de Software advised by Professor Vasco Pereira and engineer Hugo Duarte

Fonseca and presented to Faculty of Sciences and Technology / Department of Informatics
Engineering.

January, 2021

D
EV

EL
O

P
M

EN
T

O
F

A
 M

ES
SA

G
E

B
R

O
K

ER

G

io
va

n
n

i H
en

ri
q

u
e

Si
lv

a
O

liv
ei

ra

Faculdade de Ciências e Tecnologia

Departamento de Engenharia Informática

DESENVOLVIMENTO DE UM BROKER

Giovanni Henrique Silva Oliveira

Dissertação Desenvolvimento de um Broker no âmbito do Mestrado em Engenharia
Informática, especialização em Engenharia Informática orientada pelo Professor Vasco

Pereira e Engº Hugo Duarte Fonseca e apresentada à Faculdade de Ciências e Tecnologia /
Departamento de Engenharia Informática.

Janeiro de 2021

 i

 ii

Abstract

Nowadays a growing number of systems and applications are being decoupled from on-

premises infrastructure and developed and/or transitioned to the cloud. This supports

cloud computing and heterogenous and separate systems that can be acessed online and

via APIs. The growing number of applications and systems and their presence on the

cloud raises new requirements and opens new possibilities concerning integration. It is

becoming common practice to depend on different distributed systems with an

increasing number of partners. Direct integration calls are an option for smaller systems

with a decreased number of integration systems, however not appropriate for more

complex systems and numerous systems. The use of Messaging Integration has been

seen as a solution for those integrations scenarios and for the past decade, the use of a

separate Messaging Oriented Middleware System has also gained popularity to separate

the integration layer, where integrations are located, from the different systems, and

with this option, new services have emerged to meet the demand.

In this report it is described an implementation of a generic integration system that

allows users to integrate heterogenous cloud systems with the use of APIs without need

for coding. The implemented solution has the purpose of tackling hardships that come

with manually coded integrations and associated costs.

Resumo

Hoje em dia, cada vez mais, as aplicações e sistemas estão a ser separados de

infraestruturas on-premise e transitadas e desenvolvidas para a nuvem. Este movimento

suporta cloud computing e sistemas separados e heterogéneos que podem ser acedidos

online e via APIs. A crescente presença de aplicações e sistemas na nuvem levanta

novos requerimentos e abre portas a novas possibilidades relacionadas com integração.

Está a tornar prática comum depender de diferentes sistemas distribuídos com um

número crescente de parceiros. Integração através de chamadas diretas são uma opção

para pequenos sistemas com um baixo número de sistemas a ser integrados, no entanto

não é apropriado para sistemas mais complexos com números elevados de sistemas a

integrar. A utilização de Integração por mensagem tem sido vista como uma solução

para esses cenários de integração, e durante a década passada, a utilização de um

sistema Middeware Orientado a Mensagens tem ganhado popularidade de modo a

separar a camada de integração, onde as diferentes integrações estão localizadas, dos

diferentes sistemas, e com esta opção, novos serviços tem emergido para acomodar a

demanda. Neste documento está descrito a implementação de um sistema de integração

genérico que permite aos utilizadores integrar sistemas heterogéneos na cloud através da

utilização de APIs sem necessidade de codificação. A solução implementada tem o

objetivo de reduzir as dificuldades que surgem com integrações codificadas

manualmente e os seus custos associados.

 iii

Keywords

broker, brokering, message, messaging, message-oriented middleware, distributed

systems, heterogeneous, heterogeneous systems

 iv

 v

Acknowledgments

 vi

 vii

Contents

Chapter 1 Introduction .. 1

1.1 Motivation .. 1

1.2 The Problem ... 1

1.3 Project Team .. 2

1.4 Development Methodology ... 2

1.5 Planning ... 3

1.6 Risk Analysis ... 4

1.7 Objectives .. 5

1.8 Results.. 5

Chapter 2 Background Review .. 7

2.1. Evolution of Integration Requirements .. 7
Early System Requirements ... 7
Enterprise Growth & Integration Requirement .. 7
Enterprise Resource Planning .. 8
Current and Future Enterprise Integration Requirements ... 9
Messaging .. 9

2.2. Message Broker ... 10
Validation, Transformation and translation .. 11
Message Patterns .. 12
Business Processes ... 13

2.3. Technologies .. 13
C# ... 13
.NET ... 13

Chapter 3 State of Art ... 15

3.1. Microsoft BizTalk .. 15
Internal Message Access .. 16
Biztalk Architecture ... 17
Logging .. 21
SWOT Analysis ... 22

3.2. Boomi AtomSphere ... 23
Boomi’s Atom .. 23
Boomi Processes .. 23
Internal Message Access .. 24
Boomi Architecture .. 25
Logging: Process Reporting ... 31
SWOT Analysis ... 31

3.3. Workato ... 32
Recipes ... 32
Internal Message Access .. 33
Workato Architecture ... 34
Logging: Jobs Reporting .. 38
Workato Tools .. 38
SWOT Analysis ... 38

3.4. Technologies .. 40
XML (Extensible Markup Language) .. 40
XSD (XML Schema Definition) .. 40

 viii

XSLT (Extensible Stylesheet Language Transformations) .. 40
XPATH ... 40
JSON .. 40
JSON Schema ... 41
Service Bus/Message Broker Implementation .. 41
Event Streaming Platform - Kafka ... 42

3.5. Overall Analysis .. 44
Data/Messaging Sharing ... 44
Data Consistency .. 45
Data Language .. 45
Deployment .. 45
Scalability ... 46
Broker Messaging Support ... 47

Chapter 4 Requirements .. 48

Chapter 5 Implementation .. 51

References ... 55

Appendix A ... 61

Appendix B ... 63

 ix

 x

Acronyms

API – Application Programming Interface

B2B – Business to Business

CLR – Common Language Runtime

CTS – Common Type Specification

ERP – Enterprise Resource Planning

IL – Intermediary Language

JSON – JavaScript Object Notation

MOM – Messaging Oriented Middleware

XML – Extensible Markup Language

XSD – XML Schema Definition

XSLT – Extensible Stylesheet Language Transformations

 xi

 xii

List of Figures

Figure 1- First Semester Gantt ... 3

Figure 2- Coupled Manual Data Sharing ... 8

Figure 3- Centralized Data Sharing .. 8

Figure 4- Synchronous and Asynchronous calls ... 9

Figure 5- Different Systems with different Data Types ... 10

Figure 6- Visual Broker Example .. 11

Figure 7- Validation and Transformation .. 12

Figure 8- Example of Topic .. 12

Figure 9- Example of Queue .. 13

Figure 10- Biztalk Simplified View [12] .. 16

Figure 11- Biztalk Message... 16

Figure 12- BizTalk Promote Functionality [29} ... 17

Figure 13- Promote Property Fields [29] .. 17

Figure 14- Receive Port ... 18

Figure 15- Receive Port ... 19

Figure 16- Receive Pipeline .. 19

Figure 17- Send Port Group ... 19

Figure 18- Send Pipeline ... 20

Figure 19- Boomi Atom .. 23

Figure 20- Start Shape .. 24

Figure 21- Process Example ... 25

Figure 22- FTP Connection ... 26

Figure 23- FTP Connector Operation .. 26

Figure 24- Profile Component Formats .. 27

Figure 25- Profile structure .. 27

Figure 26- Connector Configuration ... 28

Figure 27- Workato Recipe example ... 32

Figure 28- Recipe Data showing Datapills from step 4 .. 33

Figure 29- Data Access and Storage .. 34

Figure 30- Trigger Mechanism & Dispatch types [21] .. 35

Figure 33- Stack OverFlow Trends - json vs xml .. 41

Figure 34- Kafka publish/subscribe with one subscriber ... 42

 xiii

Figure 35- Kafka publish/subscribe with two subscribers ... 42

Figure 36- Kafka publish/subscribe with two consumer groups .. 43

Figure 37- Host Concept ... 46

 xiv

 xv

Table List

Tabela I – Legenda tabela. ...Error! Bookmark not defined.

Introduction

 1

Chapter 1
Introduction

This report presents an overview of messaging concepts along with a few technologies

that support the messaging paradigm and a few solutions created by competitors.

It starts with a brief contextualization on what integration is, and what caused and

brings the need for integration in the first place. Followed the contextualization, the

document refers to a few solutions developed to meet the requirements raised by this

need to integrate systems and their context, this will be explained with the use of a few

virtual examples. It will then explain why those systems and solutions are no longer

appropriate in certain and specific scenarios followed by explaining what messaging

and message brokers are, and how they can fulfill several aspects and needs that

previous solutions cannot.

A few developed message broker solutions are then studied and analyzed along with a

few technologies they use or are appropriate for message brokers and a few of their

functionalities, followed by comparisons of the different technologies and systems. The

requirements are then stated to retrieve the different functionalities needed for the

system to be developed, and the implementation is then reported.

1.1 Motivation
With the introduction of the concept of globalization in the 20th century and the

widespread and expansion of it in the 21st century, enterprises have been met with

several opportunities to expand their business and have been looking to innovate ever

since to stay above water when it comes to competition and move their business abroad.

This includes expanding premises, opening new hubs, partnering with several partners

and use of external services. These processes include the need for integration.

Integration is becoming more complex due to the number of partners and extent of

enterprises, and therefore, harder to accomplish, develop and maintain when done

manually case by case through programming and direct integration.

This report proposes a system that works as the base of an integration middleware

system that allows its users to create different integrations for their needs and scenarios.

The system characteristics and features will be based on the evaluation of the different

currently existing solutions. It will be a system that meets the integration requirements

of B2B, cloud systems with the use of APIs.

1.2 The Problem
The project is being developed as a dissertation proposal by MAEIL, a company that

provides integration services to select partners called Orchestra, to support different

enterprises to integrate their data with one another.

Chapter 1

 2

Integrations are however made manually through coding and require direct action and

work from MAEIL. Clients need to contact the company, describe their integration

needs, and the different data types and formats are then specified for an integration to be

manually developed on a personalized way. Currently the different connectors and

business logics are created to order and in this current state it requires a great amount of

human intervention for this process.

So instead of providing integration services this way, the system proposed by this report

presents an integration system that can be later used as Software as A Service. This

system is a piece of software that includes several different generic integration elements

that can be used together by the customer to define and setup integration sequences. It

will be designed in a way that it can be created not only by developers but by customer

who have no expertise in programming as the element-based system should be as

codeless as possible. A codeless element-based system makes it easier to create

integrations, allowing customers to create integrations of their own and accessible to a

greater number of enterprises, be it smaller or bigger.

The element-based design allows the application to be incremented in terms of

functionalities without affecting existing ones.

1.3 Project Team
This project comprises of the following members:

 Vasco Pereira – Supervisor at DEI

 Hugo Duarte Fonseca – Supervisor at MAEIL

 Giovanni Oliveira - Student

1.4 Development Methodology
For the development methodology to be used for the development of this piece of work,

an iterative approach does seem more appropriate. The modularity and different

functionalities that the Message Broker has makes iteration a beneficial option as the

different parts and functionalities can be added and tested over time one by one as

required. This methodology also allows an easier control over possible risks and adjust

as needed.

This iterative approach consists of initial requirements and architecture design, followed

by incremental development of the system parts.

Firstly, the functional and non-functional requirements are taken to understand what the

needs and restrictions are for the design of the system.

A second step consists of the design of the system architecture and the different

components to meet the necessary requirements.

After the system design has been completed, the application is developed. The system is

developed incrementally, meaning small functional parts of the system are developed

and tested at a time, and later incremented to the final product.

Introduction

 3

1.5 Planning
In this section, it is documented the planning process and the expected division of tasks.

First Semester

This project has had it start on the 20th of September when I have been introduced to the

current way integrations are being done. Integrations I have documented.

Figure 1- First Semester Gantt

The first four weeks, I have dedicated my time to analysing how some integration

services are currently done in terms of its architecture, technologies used, and packages

and frameworks integrated to support the solutions. This researching about these

different tools for two projects and the documentation of them.

Following these tasks, I have started the research related to the State of Art. While at

first, I was having difficulties orienting myself, after a conversation with the supervisor

I went back on track. This phase included research of different existing solutions for

generic integration applications and their possible architecture in order learn possible

ways to implement mine and a few technologies along with it.

While I was researching about the current solutions under State of Art, I was taking

notes separately and writing bullet points, I then decided that would be better and more

beneficial if I started writing into the report directly as I was researching and learning

and therefore, the Report Writing task overlaps the State of Art and drags along until the

end of the first Semester.

After some research has been done, I started having in mind a few possibilities and

structure design of a possible system, and therefore I have made a few component

diagrams to share ideas with the supervisor, as possibly taking the functional and non-

functional requirements, to adapt to a final possible design. This corresponds to the Pre-

Design of System task.

It was only possible to extract the requirements after the New Year, and so this task has

been done close to the end of the Semester to be able to design a possible final system.

Finally, the last task done was related to the design itself as specific above.

Chapter 1

 4

Second Semester

For the second semester, the planning is set to cover the development of the System

using the chosen software development methodology. The planning of the Second

Semester has been formulated at the end of the First Semester and is used as guidance

for workload division. It can be re-adjusted and reformulated as needed based on the

divergence of expected outcomes.

The first week has been assigned for the development of the different components to be

stored in the database and creation of the database itself.

From the 12th of February to the 10th of April, it is expected the development of the base

of the Broker component which would include the creation of the system responsible to

accommodate different elements, and the initialization of integrations made of them.

Followed would be the development of an Integration Management Component that is

made of a REST API responsible for initiating and stopping already created

integrations. This task should take around 20 days.

After this task, a Logging Component is planned to be developed from 30th April to 20th

May, which is responsible for the storage of integration logs.

The last Development task is designed to be an Element Management Component,

which is also a REST API responsible for managing the elements from a user. This

should take roughly 1 month.

The final Task is the writing of the Final Report, which is set to start around 10th June

and continue until delivery.

1.6 Risk Analysis
A few prominent risks have been acknowledged and evaluated along with ways of

dealing with them.

The risks are mainly focused on the lack of experience with certain technologies and

frameworks, including the use of services, such as cloud databases and the integration

of those elements in the project.

Introduction

 5

Condition
Consequenc

e
Probability Impact Risk Action How?

Lack of
experience

with
programmin
g language

Hardship
and

development
delay

Mediu
m High

3 Serious 2
Seriou

s
5

Mitigat
e

Spend extra
time in research

regarding the
language

Difficulty
integrating
technologie

s,
framework

and
services

Hardship
and

development
delay

Mediu
m High

3 Critical 3 Critical 6
Mitigat

e

Spend extra
time in research

regarding the
technology,

framework or
services

Impossibility
of

development
using the

technology

Low 1
Catastrophi

c
4

Seriou
s

5 Avoid

Fully invest in
the resolution of
the condition by
focusing solely

on the
integration of
the required

services

Difficulty
integrating

with
services

already in
use

Developmen
t delay

Low 1 Critical 3
Seriou

s
4

Mitigat
e

Research and
request help on

information
about

integration to
existing

systems/service
s.

1.7 Objectives
The objective of this internship is the study of different integration techniques and

different integration concepts that support those same techniques to understand why

integration is important and a modern requirement in certain settings. It also has the

purpose of exploring different message broker solutions developed and currently

available, to better understand their differences and how a software service can be

developed to meet integration requirement needs of enterprises including functionalities

and structure. A few technologies will also be analysed to understand what technology

is more appropriate.

The final objective is, however, the development of a functional Messaging Broker

system that can be deployed into the cloud and later implemented as a Software as a

Service. The system should provide generic functionalities that allow incremental

features for both users and developers. When it comes to developers, the system should

have a modular approach in a way that new features/elements can be added without

directly impacting previous features, and each feature work as an addiction to existing

others, having similar interactions with the system by using common interfaces. From a

user point of view, the system should support a modular approach to integration,

allowing users to easily integrate cloud APIs with the use of the different generic

elements the application has available.

1.8 Results
No results at the moment.

Chapter 1

 6

Chapter 2
Background Review

Before researching and entering a more in-depth analysis about different Messaging

Brokers, their functionalities, and what they allow users to do, it is important to

understand what they are, why do they exist, and what problems could have raised the

necessity to implement these solutions. This chapter exposes a brief explanation of the

development of enterprise information systems, and how certain problems started

arising with the growth of companies and the subsequent incrementation of enterprise

systems. It then follows with the concept of a Broker and Messaging Broker and how it

is becoming a requirement for certain branches.

2.1. Evolution of Integration Requirements
In this section it will be discussed and exemplified how the continuous development and

expansion of enterprises have brought new challenges in each stage and what solutions

have been developed to meet the everchanging integration requirements.

Early System Requirements

Despite how good a solution is, it may not be a good fit for all enterprises, as not all

enterprises have the same problems. In the early days, in the USA for instance,

companies were small enough that very few businesses needed the services of a full-

time administrator [1], the scale of business were so small, that it was easy to

administrate manually. When a customer, for instance, purchased a good or made a

reservation, it would be registered locally on paper, and that would suffice as the flow

of requests were small enough and the overall customers were local and manageable.

After WW2, the economic ‘Boom’ accelerated the flow of business and customers, and

the completely manual operations started to become inefficient, and the aid of enterprise

systems was needed. Small local systems were used, usually, a simple application that

would meet a specific department’s needs, helping manage operations performed and

improving performance, bringing a smaller rate of manual error, and increased

economic benefits.

Enterprise Growth & Integration Requirement

With the economic and customer flow increase, companies grew as a consequence. This

growth forced companies to expand, be it locally within the company, or externally, by

opening new hubs elsewhere. This introduced a set of problems that needed to be

resolved.

Due to complexities, enterprises needed to separate inner responsibilities across

different departments, such as accounting, IT, sales, inventory, among others. And so,

when, for instance, a sale was completed, by the sales team, the purchase information

needed to be reported to both the inventory and accounting departments. This created a

dependency between departments systems which could often cause problems such as

Chapter 2

 8

outdated data between departments, incoherent data due to human error, inefficiency,

scalability issue, communication complexity, amongst others, and brought the need for

integration systems such as ERP systems (Enterprise Resource Planning).

Figure 2- Coupled Manual Data Sharing

Enterprise Resource Planning

ERP is the name given to a system or software used by an organization to facilitate the

management of daily activities of the company through centralization. [2]

It is, fundamentally, a centralized system with a single database and data structure that

provides integration for the different departments within a company, allowing the

access of updated data between all departments, reducing human error and increasing

the level of automation.

So, for instance, if the Sales Department wanted to add a Sale into the system, it would

use common tables amongst all departments in the shared Database and insert the sale.

The accounting department would then have access to updated, recent data, and would

be able to perform operations on that date and save the results in the same database,

since it knows what data format and structure to expect.

Figure 3- Centralized Data Sharing

Background Review

 9

Current and Future Enterprise Integration Requirements

In a modern and recent setting, with the introduction of globalization and redefinition of

the meaning itself, different, yet similar needs are surging. The ever-growing amount of

data, department size, and its systems’ operations complexity require a greater level of

decoupling for the sake of management. The introduction of new technologies for the

different needs of the different departments pushes these departments to opt for

heterogeneous systems using different technologies, which makes coupling and the use

of a single Database unfavourable, and so the need to integrate these systems becomes a

high priority. This is a case example of heterogeneity within a company. A possible

solution would be messaging integration.

Messaging

Messaging is the act of communicating through the exchange of messages. It allows

asynchronous, fast multi-system communication, working on the basis of message

sharing to transfer data. At first glance it may seem like an HTTP request, but with the

difference there is no need to wait for the whole process to take place and wait for an

answer, simply sending the Message (data) itself and ‘forgetting’ about it (send and

forget). There are possible analogies that help understand better what Messaging is.

Take an example of a phone call. When a person wants to communicate with another,

they would grab the phone and call the desired person, and the conversation could only

take place if the other person was present and near the phone to answer and talk, and the

conversation would only be over when both parties ended the conversation subject. This

is an example of a synchronous communication. Now, for instance, consider that

another person also wants to communicate with their friend, however this time, they

choose e-mail as the mean of communication. They can simply write an e-mail on their

computer or mobile phone, and send it, without waiting for a specific reply for the

message, and whenever the friend has time and is ready to read the e-mail, they can do

so. This is an example of asynchronous communication, and this is what messaging in

based on.

Figure 4- Synchronous and Asynchronous calls

The messages shared are basically some data structures like JSON or XML [28] that are

technology independent, therefore allowing heterogenous systems to communicate and

share data with each other. The nature of using messaging to communicate between

heterogenous systems brings a few limitations, however.

Chapter 2

 10

Figure 5- Different Systems with different Data Types

As visible in Figure 5, the Sales Department has a system running on Java and using a

SQL database, and when it comes to data type it expects to receive and send, the data

type is JSON, and the format is Item and Quantity.

On the Accounting Department however, they are using C++ along with a MONGO DB

and expects Json as well, however with a different format of Object, Amount.

Finally, the Inventory Department has its systems developed in Python and a SQL

Database and expects to receive and send CSV formatted data.

For data to be shared between these departments it would be necessary the creation of

one endpoint in each system, for each action, (such as sale, renting, etc…) that would

convert and translate the different message data types and structures. This may be

appropriate and easier for smaller distribution of systems but bring certain problems

such as code duplication and complexity and difficulty of integration when new features

are added within a bigger distribution of systems.

Similar cases can happen externally such as a company expanding overseas, for

instance, may have difficulties sharing the same database. The same applies to a case of

integration with external entities to the enterprise. When a company receives an order, it

may need to communicate with several different systems, to process that order, that may

not belong to the organization itself, such as a delivery company or other partners. In

this case, depending on the number of partners, the complexity and number of endpoints

needed would be extremely high.

One possible solution is the use of Message Brokers.

2.2. Message Broker
Message Brokers are middleware, also referred as MOM (message-oriented

middleware), that facilitate the connection of several different systems together. It is a

software that allows application, systems, and services to share information with each

other by validating, translating, and transforming messages between messaging

Background Review

 11

protocols, and filtering, selecting, and routing with the support of its routing services

and business rules functionality[3][4]. This allows heterogeneous systems and services

to communicate with one another even in the event of being written in different

languages and needing not to know anything about each other. It also allows messages

to be shared between more than one system. For instance, if a Sales Department

registers a sale, a message can be sent to the Broker, and then sent by the Broker to all

Departments whose information is appreciated.

Figure 6- Visual Broker Example

Following the last example, and as it is visible in Figure 6 the Sales department sends

the sales information as json, and the Broker then, for each department previously set as

destination, translate, and transforms that data type into the required data type of the

destination department based on pre-set schemas for the effect.

Validation, Transformation and translation

One of the essencial functionalities of a Message Broker are validation, Translation,

Transformation and routing of messages. This is the essence of a broker. Firstly, upon

receiving a message, the broker needs to verify and guarantee that the message is in

fact, contructed with the expected elements and in the correct format. This is to filter

wrongly formulated messages and avoid future data corruption. This can be done with

schemas such as XSD (XML Schema Definition) and JSON Schema. Then translate and

transform the data into another format using, for instance, XSLT. (Extensible Stylesheet

Language Transformations) Following, then, to the routing of the transformed message

to outter destination systems.

Chapter 2

 12

Figure 7- Validation and Transformation

Message Patterns

Message Brokers often use queues and topics in order to distribute and route messages

to their destination and allow asynchronous communications. There are two basic

distribution patterns.

Publish/Subscribe Messaging: As referred before, one advantage of Message Brokers

is the fact that it removes the need for different systems to call several systems and one

by one by their endpoint to send the same message to all of them. The Broker can

receive a single message and send that same message to all necessary destinations, by

possibly, using a topic. A Topic is a message container that receives messages, from one

or more publishers, these can be clients or for instance, interfaces, and then the same

message published into the topic can be read by one or more consumers, which would

be the destinations. This can be referred as the publish/subscribe paradigm.

Figure 8- Example of Topic

Point-to-Point Messaging: Point-to-Point Messaging usually uses Queues. Messages

can be published into queues by one or more publishers but can only be read once by a

single subscriber. It works in a similar way a REST API would work, in that it has a

one-to-one relationship, the message sender, that sends a message and the receiver, that

reads/consumes that message. It has the benefit, however, of allowing asynchronous

messaging, that being, if the receiving end is unavailable, messages can be read later,

and the sender does not need to be waiting for a response.

Background Review

 13

Figure 9- Example of Queue

Business Processes

Message Brokers usually do have a business process component. This component is

responsible for containing the business logic to be applied to the incoming messages.

Business logic is the segment of the Message Broker that applies logic to messages, this

can be used for filtering, routing, and monitoring/notifying. For instance, in a scenario

of business logic applied to routing, when receiving a message from the Sales

department, it may check for certain characteristics of the message, this could be

message type, content, attribute, among others, and based on that characteristic, can

either route it to the Accounting Department only or route it to the Account Department

and Inventory Department instead. This could also be used to validate purchases if and

only if there is inventory for the items in question. Routing is part of the Orchestration,

which controls the flow of the messages.

2.3. Technologies
For the development of a system, the usage of different technologies is unavoidable.

The following are technologies that will be used in this project as they are required.

C#

C sharp is an object-oriented programming language developed by Microsoft in 2000

with the goals of being a simple, general purpose language for developing software

components while providing support for software principles . C# is run on the .NET

Framework and was introduced alongside .NET Framework and Visual Studio. C#

programs are run on .NET. [30]

.NET

Chapter 2

 14

.NET is a Virtual execution system, named common language runtime (CLR), and a

collection of class libraries developed by Microsoft with the objective of code

interoperability. The .NET Framework compiles code written in the C# language into an

intermediary language (IL). That code and resources are then stored in an assembly

either with an extension of .exe or, usually, an extension .dll. When a C# Program is

run, the CLR loads the assemblies and perform compilations to convert the intermediary

language code into machine instructions [30]. Because the compiler conforms to the

Common Type Specification (CTS) and uses intermediary language, code compiled

with .NET can interact with each other, even if written in different programming

languages.

State of Art

 15

Chapter 3
State of Art

In this chapter there will be an exposition of different existing brokers in the area of

data integration and different competitors’ related work and offers. A few solutions will

be shown and explained to be later compared and analyzed to understand the differences

between them and how the different characteristics can be applied to the solution to be

developed.

3.1. Microsoft BizTalk
Microsoft Biztalk is a middleware that facilitates the connection of several different

systems together. Modern organizations are usually modularized, or for instance,

divided into departments, such as the Finance Department, the Sales Department, Data

department, amongst others. When, say, a sale is accomplished via the company’s

website, it may need to communicate with all these departments, and traditionally, in

this case, the website would have to call all these endpoints to send the purchase

request. This can bring complexity and data integrity problems. There is also the

problem of technology use. The different departments may use a wide range of

incompatible technologies.

The BizTalk Server follows the publish/subscribe architecture, and therefore a message

is published into the system and received by one or multiple subscribers. Biztalk

implements the ‘content-based publish/subscribe’ model. [10] Content-based

publish/subscribe model refers to a model where subscribers state what messages they

want to receive based on a set of criteria about the message. When it comes to BizTalk,

the message is assessed the moment it is published and all subscribers that are looking

for messages with specific details met in the receiving message receive the message.

Biztalk uses XML as the inner message language, to functions in terms of validation

and transformation to referencing data.

BizTalk is comprised, from a simplistic view, of Receive Ports, a Message Box,

Orchestration and Send Ports.

Chapter 3

 16

Figure 10- Biztalk Simplified View [12]

Internal Message Access

In this section, it will be discussed how Microsoft Biztalk Server shares data amongst

internal elements.

BizTalk Message

Messages in BizTalk Server are structured in a multi-part format. The moment a

message is received by Biztalk to the moment they go out, they are processed as a class

named Biztalk Message. They are made of a Context and zero or more parts. Messages

with several parts have one of those parts set as the body part. Each parts comprise of

data, be it a XML document, flat file or other binary stream of data. The body part is

used to identify the type of message for purposes of routing. [12]

Figure 11- Biztalk Message

Message Context hold a set of properties about the message, values can be drawn out

from the message or generated by BizTalk. To draw properties from the message,

Biztalk uses a concept of ‘property promotion’. Promoted properties are held in a

property schema of the schema, in a shared location, so that it can be referenced by

others schemas. Property schema has the name and type of each element that is defined

as promoted.

State of Art

 17

Figure 12- BizTalk Promote Functionality [29}

Figure 13- Promote Property Fields [29]

When it comes to values generated by Biztalk into the Context, it can be added, for

instance, by the adapters themselves. They put properties into the Context about certain

message details like the location the message was received and the type of adapter used

to receive the message.

Biztalk Architecture

In this section the different components of the Message Broker are broken apart and

analysed in terms of functionalities and structure.

Endpoints - Ports
Ports are the endpoints of BizTalk. Is through ports that messages are received and
sent to outter systems. Ports consist of adapters, pipelines and optionally a Mapper.

Chapter 3

 18

With all the components, the Port is able to receive data, validate data, encrypt or
decrypt data if needed and convert the data into a BizTalk Message.

Adapter: The adapter is responsible for extracting, receiving and sending the data from
and to a transport.
Pipelines: Pipeline is responsible for inducing the message received from the Adapter
into a sequence of stages, as there are reasons to prepare and transform the
messages. It is in the pipeline that operations like Decoding/Enconding,
Dissassemble/Assemble and validation happen.
There can be more than one component associated with each stage. It is here that
message types such as Flat Files are converted into XML, via a parser, so some
operations in Biztalk can occur, such as validation.
Mapper: After the above processes, Biztalk can Map the XML data into a different XML
schema, using XSLT, that may be used internally for that type of data. Biztalk has a tool
named Biztalk Mapper which facilitates the creation of XSLT files. In case there is a
complex XML translation, such as a Contact with multiple different address types, it
has a ‘functoid’ visual functionality to facilitate the process.

There are two types of Ports: Receive Ports and Send Ports.

Receive Ports
Receive Ports are collections of one or more receive locations and a possible
InboundMapper.

Figure 14- Receive Port

State of Art

 19

Figure 15- Receive Port

Receive Locations contains and are made of a Receive Adapter and a Receive Pipeline
and is the configuration needed by Ports to make use of these two elements,
representing the configuration of a single endpoint to receive messages.

In case of a Receive Port, the receive adapter listens or looks for data wherever it is

configured to look at, and upon receiving new data, it converts the data received into a

Biztalk Message and places a set of data attributes into the Context of the Biztalk

Message.

The receive pipeline receives the messages from the adapter and make them go through

the possible stages:

Figure 16- Receive Pipeline

Send Ports & Send Port Groups

Send Port Groups are multiple Send Ports and behave similarly to a distribution list.

Once a message is sent to a Port Group, the message will be redirected to all Ports

linked to that Port Group.

Figure 17- Send Port Group

Chapter 3

 20

Send Ports are a composition of a send pipeline and a send adapter.

Both send ports and send port groups have three different states: Bound- Send port and

port groups are bound to an orchestration. Started- It means they exist and are active,

when in this state BizTalk will deliver messages to the port or port group. Stopped- Port

or group Port are not running. When in this state, new messages are sent to a queue of

the host where a send handler is running.

Because Biztalk separates the messaging layer from the business process layer, a port or

port group need to be bound to at least an orchestration to receive messages, therefore

needing to be Bound to be started.

In case of a Send Port, the send adapter receives the Biztalk Message and adapts the

message to be sent to the destination defined.

In case of a Send Port, the send pipeline receives the message from Biztalk and makes

it go through different stages, so that it can, for instance, convert the XML into a

different data type such as flat text. The different stages are as follows:

Figure 18- Send Pipeline

Data Storage/Sharing - MessageBox
The MessageBox is the base of the publish/subscribe engine in Biztalk.

The MessageBox is made of two components:

• One or multiple Microsoft SQL Server databases

• Messaging Agent

The SQL databases allows persistence for several things such as messages, message

properties, subscriptions, orchestration state, message parts and so on.

The Message Agent is the component that encapsulates and abstracts the database

component and works as the interface used by BizTalk to communicate with the

MessageBox [13]. It supplies interfaces for actions like subscribing to messages and

message retrieval, so that, for instance, orchestrations, can receive the messages.

As previously stated, messages inserted into the database come as Biztalk Messages.

Biztalk Messages have a Context and is through that Context’s promoted and predicated

properties that business processes verifies if it subscribes to that message. If it does, the

MessageBox sends the message to the business process, which then, after processing, if

the business process is bound to a send port, it returns a message to the MessageBox.

Business Process/Rules - Orchestration
Orchestration is a mechanism for defining how messages are exchanged in a business

process. It provides functionalities such as semantics for modelling exceptions,

synchronization, parallel processing, and conditions.

State of Art

 21

Orchestration can be activated by subscribing to messages published to the MB OR

explicit call from another orchestration. They are often long time running (waiting for

an answer) and its process state must be saved in the database. Uses Types such as port

types and Correlation Types to support correlation (through context variable).

Correlation Type and Correlation Sets are used to provide correlation between a

message sent asynchronously and an acknowledgment received later by a system related

to that request.

Correlation type is a collection of context properties, that are also used for routing

purposes. The properties are selected from XSD schemas created.

Correlation Sets are sets of properties that hold actual data and are instances of the

Correlation type they point to. This is held in an XML format.

In the example above an order is received at the first step, and then, at the second step it

is sent via a send Port. In the Send Shape, it is possible to define an Initializing

Correlation, for when the objective is to set the values of the Correlation Set based on

the Context attributes of the current message at the Shape.

At the third shape, a receive shape, the ‘Following Correlation’ property is set to be the

same Set as the previous Initializing one. This basically defines a subscription of the

next message received that has all and the same values currently at the Correlation Set.

This allows correlation on characteristics like IDs.

Orchestration has a flow that can be created by the user. It is here that business rules are

implemented, whiles, if/else and decision making.

Logging

No Logging information has been found for Microsoft’s Biztalk Server.

Chapter 3

 22

SWOT Analysis

Strengths Weaknesses Opportunities Threats

-Provides a lot of

functionalities for

developers

-Good for Message

widespread as it is

fully based on

subscriptions

-Good Variety of

Technology

Adapters

-Complex

compared to

alternative

-Is on-premises

only

-Complex structure

for simpler

integrations

-Expensive

Solution

-Ease of access to

local structure

-Unfriendly

Interface

-Forced

technologies like

XML

-Lack of media

documentation

-Only on Windows

State of Art

 23

3.2. Boomi AtomSphere
Boomi Atomsphere is like Microsoft’s Biztalk Server in terms of purpose and in what it

allows to be done. It has, however, a different architecture and different characteristics

to its competitor. Boomi works as an integration Platform as a Service (iPaaS) and

allows customers to integrate diverse composition of cloud and on-premises

applications with no software or coding. This is one advantage point in that

AtomSphere is 100 percent cloud native, allowing users to integrate application at any

time and any place, being able to choose between downloading the integration solution

created on cloud to run on-premises or using Boomi’s cloud platform to run the

integration Solutions.

Figure 19- Boomi Atom

Boomi’s Atom

Dell’s Boomi has a patented lightweight, dynamic and self-contained runtime engine

called Atom. The Atom contains one or more Integration processes that are initiated

when the Atom is. They run Virtually on any Server (supported o windows and Linux

operating systems and require Java and Java Runtime to function).

Boomi Processes

Processes is the name given to a sequence of integration actions. They contain A

sequence of Shapes and components that are connected to one another, to create an

integration flow. Processes have a start and end point and start when their start trigger

(Start Shape) is activated. Processes can hold variables that are accessible to all Shapes.

The act of running a Process is called ‘Execution’.

Chapter 3

 24

Figure 20- Start Shape

The Start shape can be of 4 Types: A connector, Trading Partner Connector, Data
Passthrough and No Data. This means a Process can start with data from personalized
Connector or a pre-defined connector, from a process call or start with no data, from a
timer trigger.

Internal Message Access

In this section, it will be discussed how Dell’s Boomi Atomsphere shares data amongst

internal elements.

Documents

Documents are data that goes through a Process. Documents can be single records,

groups of them, an EDI Transaction or an entire file. Documents, however, are normally

individual files read in. A point to be taken into consideration is the fact that some files

may represent more than a record such as a csv file with several rows, therefore, if the

User needs to process them individually, it is needed to use the Split Documents

function from the Data Process Shape

Document Flow

Boomi does not have a specific internal data type. Documents flow from Shape to

Shape from the start of the process to the end of it as a way of sharing data between

Shapes.

Boomi supports five raw document types: XML, JSON, Flat File, EDI and Database,

and allows the creation of Profiles for each of these. Documents are presented in 4

different formats:

• Records: for Flat Files and Database Types.

State of Art

 25

• Transactions: for XML and EDI.

• File Instances: does not require structure analysis (email analysis/exporting to

disk).

• Empty: for simple triggering of subsequent shapes within a process.

Figure 21- Process Example

Document Properties

In Boomi it is possible to set Document Properties. Document Properties are similar to

Microsoft’s Biztalk Server’s Message Context, possibilitating metadata associated with

each Document. There are two types of Document Properties: Document Property and

Dynamic document Properties.

Standard Document Property contains run-time specific data such as connector type.

Dynamic document Properties are properties that can be used or created to be used

temporarily by Shapes.

Boomi Architecture

Boomi Shapes

Shapes are a bundle of pre-defined available tools with their specific code that perform

specific tasks. They are separated into three categories:

• Connector Shapes: Connectors are used to get data into the process, and send

data out of the process.

• Execute Shapes: Execute shapes are used to manipulate and transform data.

• Logic Shapes: Logic shapes are used to control the flow of the process. This

includes Business Rules. (such as if conditions)

Boomi Shapes use Components to configure their behaviour. Shapes may have some

configuration attached to themselves but more detailed configurations such as an URL

to access are made via specific components for the Shape. Components in a real setting

could be either a file or data stored in database columns.

Boomi Components

Components are reusable configuration objects, this includes apis, certificate

connections, connector operations, cross reference tables amongst others. As per the

Chapter 3

 26

nature of reusability, it can be created once and referenced by multiple Shapes. For

instance, the components Connector Connection and Connector Operation can both

used to configure one or more Connectors. The following are examples of a connection

and an operation component:

Figure 22- FTP Connection

Figure 23- FTP Connector Operation

Profile

Profiles detail the layout and format of different documents read into and out of

AtomSphere. Profiles do not fall into the Shape category, as they are not usable

elements in the process, but a component, therefore a configuration some shapes use. It

works similarly as an XSD would, in the sense that it defines a group of data elements,

that a document can have, and with that, allow for data transformation and validation.

While Microsoft’s BizTalk receives the messages and has a parser to convert the

different data formats into XML in the pipeline, and then validate it against an XSD, in

Boomi, messages are parsed using Mappers, which use Profiles to extract data, and if

validation is needed, Boomi has a logic Shaped named ‘Cleanse’ that also use a Profile

to check for mandatory data.

Boomi allows 5 data formats to have profiles: Database, EDI, Flat File, XML and

JSON.

State of Art

 27

Figure 24- Profile Component Formats

Figure 25- Profile structure

Different Shapes

Endpoints - Connector Shape
The Connector shape is the main element containing all the information and operations

to connect to a data source by using referenced Components to setup a connection.

There are available out-of-the-box technology Connectors ready to setup and use. The

technology connectors available to use can be found at [15].

Connector Shapes contain two components: A connection and an Operation.

• Connection: Data referring to the physical connection information. (the

‘Where’) Such as URL and Port.

• Operation: Data referring to what function to call, or file(s) to act upon. (the

‘How’) This includes setting up sub-directories to look for, operation such as

(GET/ GET and DELETE) file filter, transfer type and maximum files to

read.

Chapter 3

 28

Figure 26- Connector Configuration

Business Process - Execute Shapes
Execute Shapes are Shapes that support data creation, transformation and retrieval and

document properties modifications. There are 12 different execute Shapes that provide

different functionalities:

Table 1- Boomi Execute Shapes

 MAP
Used to transform data from one format to another, with the use of a
Map component and two Profiles (source and destination).

 SET
PROPERTIES

Used after of before a connector. Sets connector-specific properties
(like file name or metadata, like promoted elements in Biztalk) for
documents

MESSAGE

Generates text messages, from static and dynamic content.

NOTIFY

The Notify Shape allows you to create custom execution logs. It does
not create a notification per document but aggregate all notification
texts into a single message. Can be sent to an email alert event. Does
not modify received documents (inbound data)

PROGRAM
COMMAND

The Shape allows the user to call system commands, SQL statements
while using a Database Connection component or a stored procedure.
A stored procedure is a user-defined function which includes a set of
SQL and procedural statements (including assignments, declarations,
loops amongst others) [19]

PROCESS
CALL

Process Call Shape allows the user to reuse processes for repetitive
tasks/processes like initialization or logging. Sub-processes are called
once for every document. Documents can be transferred to sub-
processes.

PROCESS
ROUTE

 DATA
PROCESS

Data Process Shape grants several options for manipulating document
data it allows to:

• Decode (BASE64)

State of Art

 29

• Encode (BASE64)

• Character Decode

• Character Encode

• Combine documents into one

• Custom Scripting

• Search and Replace using regular expressions

• Split Documents

• Map Json to MIME

• Map MIME to Json

• Encrypt (PGP)

• Decrypt (PGP)

• XSLT Transformation

• ZIP

• Unzip

 FIND
CHANGES

Allows the Process to Track changes made to a document

 ADD
TO CACHE

Adds Documents to a Document Cache, using a Document Chache
component, allowing to store documents to be later on retrieved by a
Retrieve from cache

RETRIEVE
FROM
CACHE

Retrieves Documents from a specified Document Cache Component,
allowing to select those with specified Keys

REMOVE
FROM
CACHE

Remove documents from Cache

Chapter 3

 30

Business Rules - Logic Shapes
There are also Logic Shapes. Boomi’s Logic Shapes are responsible for controlling the
flow of the Process. Some can function as Business Logic. The Shapes and their
functionalities are as follows:

Table 2- Logic Shapes

Data Storage/Sharing – Not Specified

Boomi does not specify what kind of database it uses, but despite the lack of

information on the matter, it is likely it uses an SQL database to store different settings

as it is the most fitting for the ocasion.

BRANCH

The Branch Shape allows the user to receive a group of documents or
document and execute the paths in sequential order. Allows the User
to virtually set more than one Output for a Shape.

 ROUTE
Route send Documents into different paths based on a value.

CLEANSE

The Cleanse Shape works as a validation tool, validating, repairing or
rejecting documents based on a profile.

DECISION

Decision Shape allows the user to route Documents based on a
comparison between two values.

EXCEPTION

Exception Shapes allow the user to conclude the integration flow and
create a custom error message. It is possible to simply interrupt the
current document processing instead of the whole process.

 STOP
Similar to exception but without creating and logging an error
message.

RETURN
DOCUMENTS

Shape that returns the documents to a parent process.

 FLOW
CONTROL

Allow to define if documents are processed in batches, Shape by
Shape, or if documents go through the whole process before the next
received document start processing. Defines how documents are
processed.

BUSINESS
RULES

Business Rules Shape contains a set of business rules that are validated
in sequence. If all Rules come back as True, the Documents go down
the Accepted path, else go down the Rejected Path. Created Map
Functions can be used.

TRY/CATCH

The Try-Catch Shape sends Documents down a ‘Try’ path and in case a
document fails to be processed, it will be added to the group of
Documents to go down the Catch path.

State of Art

 31

When it comes to Data Sharing, as mentioned beforehand, the data is shared directly

from Shape to Shape as a Process is a sequence of Shapes. It can also be shared using

queues and publish/subscribe topics with the use of the AtomQueue Connector.

Logging: Process Reporting

Boomi Process Reporting stores all the executions’ logs on a .log file [33]. This

specifies what actions have been taken in each Shape as informative strings. But there is

no way to return back and verify what data has been passed from Shape to Shape. The

only Document Data stored that can be review is the Messages/Data received and sent

from Connectors.

SWOT Analysis

Strengths Weaknesses Opportunities Threats

-Simpler Structure

-Linear Processes

-Bigger control

over data, data flow

and path

-Good Variety of

Technology

Adapters

-Not the best for

Message broadcast

as it is linear

-Logging is based

on simple strings

-No data Standard

within process

-Cheaper Option

-Friendly Interface

-Can run on both

cloud and locally

with patented

software

-Run on most

servers: windows

and Linux

-Bad customer

Service

-Can broadcast

messages using

topics but not built

for it

Chapter 3

 32

3.3. Workato
Workato is an enterprise automation integration platform, that is versatile in a way it

allows users to address all core use-cases across businesses. It was founded in 2013 by

Gauthan Viswanathan, Harish Shetty, Dimitris Kogias and Vijay Tella [20]. Built on a

foundation if iPaaS, it can automate end-to-end workflows, deploy bots as well as

utilize artificial intelligence and machine learning.

Workato provides functionality to synchronize data and integrations between different

cloud and on-premisses applications and endpoints, to have workflow automation with

the use of business processes across multiple applications and business rules.

Workato also focus efforts on the ease of use, with the goal of having the same ease-of-

use for both ‘citizens’ and developer/IT integrators by having a component-based

interface with minimal settings and programming [19].

Recipes

Recipes work similarly in a way Boomi’s Processes work. They are automated event-

based workflows that can be built by users, they are a container for other elements and

are composed of a trigger and one or more actions. When run, recipes will run in the

background waiting for the trigger event to trigger and when stopped recipes stop

looking for triggering events. When a trigger receives events, a Job is created per event

(message) received, which consists of an integration flow for a specific event. Recipes

have an ID, and can be reused and shared publicly.

Figure 27- Workato Recipe example

State of Art

 33

Internal Message Access

In this section, it will be discussed how Workato shares data amongst internal elements.

Recipe Data and Datapills

Similar to how Biztalk works with XML to perform data operations inside the broker,

Workato also has an internal message format called Datapills. Datapills are JSON-like

key-pair values that are able to hold data and are generated by the different Actions and

trigger outputs, these are stored in the Recipe Data, at Job level, meaning, every time an

event is received by a trigger, it starts a job with that event that will flow over the

business integration process, and for every data producing or receiving action in the

process, a datapill is created by the action and will be stored in the Job’s recipe Data to

be used and referenced by later actions on that Job.

Figure 28- Recipe Data showing Datapills from step 4

Datapills are identified by steps, meaning the different Datapills are separated within the

Recipe Data by the step they were produced in. Due to the structure on how data is

pushed and accessed between actions, actions can only reference data from previous

steps. Mapping can be done with both constant data and/or from variables. What this

means is, that values for variables such as connector settings can be drawn from either

both variables from a data pill and/or static inserted values. When it comes to Data

transformations, it falls into the assignment and formulas category.

Chapter 3

 34

Figure 29- Data Access and Storage

Datapills can be produced, as mentioned above, by actions, but can also be produced by

the User. Workato has an Action named Variables By Workato, and what it does is

allow the user to create a DataPill. It differs from other Datapill in the sense that the

variables defined in Variables are mutable. So the data can not only be acessed but can

also be modified. Datapills support variable of the following types:

• String

• Float

• Date

• Boolean

• Integer

• Object

• Date time

• Array/List

Workato Architecture

In the Following Segments will be shown Workato’s elements and functionalities.

Triggers

A trigger is the first element of the Workato recipe and is responsible for scanning or

listening to an event to trigger and execute the following actions described within the

recipe workflow. Triggers can be activated by app triggers, customized APIs, or

schedules. Depending on the available API, they can be categorized into different types

depending on when they check for new events and how the events are handled (single

event or event batch)

State of Art

 35

Figure 30- Trigger Mechanism & Dispatch types [21]

When Recipes receive events (data), it queues them in sequence to process them in

order, therefore, an event goes along the Recipe workflow, and only once the event

completes the processing, the next event starts processing. The process maintains a

cursor position at the Trigger event it is processing, saving its position, meaning, if the

Recipe changes its state from a running state to a stopped state, whenever the recipe

changes back to a running state it can return processing all the remaining trigger events

in the list.

Polling triggers

Polling Triggers check events periodically as configured and can be as low as every 5

minutes depending on the Workato Plan. It saves the last time it has fetched so it only

fetches from that date onwards.

Real-Time Triggers
Real-Time Triggers usually require registration in the application to connect. They work

on the basis that the application will send a notification or message to the broker, and

therefore, the broker does not need to be constantly polling the application. Real-Time

Triggers at Workato are usually Webhooks supported by regular polling, with generally,

lower polling frequency.

Scheduled Triggers
Scheduled Triggers are enacted on specific days and times. Be it hourly, daily, monthly,

amongst others. They also fetch all events matching specified criteria, in other words,

the trigger can fetch repeated events on two different calls.

Single Triggers
Single Triggers retrieve one event at a time. This is used, for instance, when a sale

happens, and the sales company sends a message or calls an API to inform other

endpoints of the sale. It is beneficial for real-time synchronization and is usually

asynchronous.

Batch Triggers
Batch Triggers retrieve a list of events at a time. This is used, for instance, when there is

a need to move sets of data from one endpoint to another, hence why it is used in

scheduled and Polling triggers.

Trigger Filters
Trigger Filters are a set of conditions that are used to filter what events are meant to be

processed and continue down the workflow. Triggers still fetch all the events that meet

Chapter 3

 36

the temporal criteria from the source, however, events are filtered afterward before jobs

are created, and therefore no log information is created. The fact filtering can happen

right at the entry, Trigger, is a positive in terms of performance, as no further processing

is needed.

Conditions

Conditions consist of 3 parts in Workato, data, condition, and value. Several conditions

can be coupled together with the use of AND or OR operators. Conditions are used in

Trigger Filters as seen before and in condition actions. There are 14 conditions the user

can choose from [22]:

• Contains

• Starts with

• Ends with

• Does not contain

• Does not start with

• Does not end with

• Equals

• Does not equal

• Greater than

• Less than

• Is true

• Is not true

• Is present

• Is not present

Business Process - Actions

Possible Actions fall into two categories: Action in an app and control flow statements.

Action in an app includes application calls.

Control Flow Statements are part of the business logic. There are 6 control flow

statements:

• IF condition

• IF/ELSE condition

• Repeat action

• Call recipe

• Stop Job

• Handle Errors

State of Art

 37

IF Conditions
If conditions allow to Shape the flow of the Recipe by verifying a condition or a set of

conditions using either one or more AND operators or one or more OR operators. If the

result is true, the Job will flow the extra steps defined by the if condition, if not, it will

ignore those steps.

IF/ELSE Conditions
If/Else Conditions also Shape the Flow of the Recipe by verifying a condition or set of

conditions, however, the flow can only be directed to one of the paths instead of both.

Repeat Action
There is a Looping functionality within the possible actions. Loops allow a portion of

Actions to iterate of a List variable, a variable that can be extracted from a Datapill from

a previous Step or created empty simply to iterate a specific number of times.

Call Recipe
Call Recipe allows a Recipe to call another callable Recipe whose Trigger is a Callable

Recipe.

Stop Job
The Stop Job Step ends the currently running Job.

Handle Errors
Handle Error Step Monitors several Steps and actions for Errors, in case an error occurs,

it can either retry up to 3 times, depending on what the User previously setup, or can

skip the job flow to the On Error path. It is like the Try/Catch concept.

Endpoints - Connectors

Connectors are responsible for connecting to external applications to either request,

receive, send or modify data. The different Connectors have their own conections types.

A complete list of Connectors can be seen at [28]. There are pre-set App Connectors for

several different apps with functionalities set for those applications specifically, and

technology connectors such as FTP, HTTP and SFTP.

Connections

To Communicate with external Apps Wokato uses Connections. Connections are

a set of configurations, pre-defined for each tipe of connector, that must be

included in the connector to connect to an external endpoint. Connections are re-

usable and can be used in multiple Connectors at a time.

Data Storage/Sharing – Not Specified

Workato, similarly to Boomi does not specify what kind of database it uses. But since

Workato store a json representation of the output data of each Job’s Actions, SQL may

be an option.

When it comes to Data Sharing, as previously stated, the data can be referenced from

previously data generating Actions. It can also be shared using publish/subscribe topics

using specific connectors.

Chapter 3

 38

Logging: Jobs Reporting

When a trigger event retrieves messages, each message will be executed by the recipe

flow, therefore generating a Job per message. All Jobs contain information about

themselves such as JobId, date and description, and are stored in a database and the

metadata stored about each Job can be seen on [24].

When a message flows from Shape to Shape in a Job, Shapes produce datapills, which

are the outputs of the processing done by the Shape, and those outputs are stored in a

database, and reference the Job they belong to. As it is possible to see on Figure 29,

during each Job, Actions produce outputs, their Datapills, and those outputs are stored

in a Job Data Tree which is then stored somewhere, possibly in a SQL Database,

referencing the Recipe Data.

With these elements, Workato Job Reporting provides the functionality of retrieving the

data produced by each Job from a data source and reconstruct the output of each Shape

to visualize the Jobs success and progress. This is Workato’s system for data tracking

and integration error analysis.

Workato Tools

Workato has also a set of tools that can be created to be used on multiple Recipes.

These are linked to the User’s account. These Tools include Common data Models,

Lookup Tables, Message Templates, Pub/Sub and Properties.

Common Data Models allow the user to create Data Models to use as reference for

Actions like Mapping. Lookup Tables work similarly to cross-reference tables in a way

that they allow the user to look for frequently used data and extract a row of data based

on a match against one or more columns.

Lookup Tables are organized like a databased and can be imported from a CSV file or

created manually, and are a good feature as it remves the need to query from an external

database or perform more expensive operations.

Message Templates allow the user to create dyamic message templaces based on

variable values.

Pub/Sub allows the user to create topics that have a schema, to be user, later on, by

publisher Actions. Publisher actions publish the schema variables into the topic, so that

Subscribers, which need to be Recipe Triggers, can listen to and trigger the Recipe they

are associated with.

Properties allow the user to set a list of key-values that can be referenced by any Action

from any recipe via the data tree, just like any other data pill data. These property values

are looked up each time a job is executed.

SWOT Analysis

Strengths Weaknesses Opportunities Threats

-Simpler Structure

-Linear Processes

-Not the best for

Message broadcast

as it is linear

-Friendly Interface -Expensive Option

-Can broadcast

messages using

State of Art

 39

-Bigger control

over data, data flow

and path

-Good Variety of

Technology

Adapters

-Can run on both

cloud and locally

with Agents

-Agents can run on

all major OS

topics but not built

for it

Chapter 3

 40

3.4. Technologies
This project has a set of technologies that have been defined as a requirement, which

were stated previously. This topic, related to the Technologies under State of Art, is

related to a set of different technologies considered to be used in the project, that may

perform or serve similar purposed and may be compared with one another to reach a

decision on which one is best.

XML (Extensible Markup Language)

Extensive Markup Language is a simple and flexible text format derived from SGML

[5]. XML defines a set of rules for encoding documents in a format that is both human

and machine readable. Its usage and specifications are open-source and the main

objective of its creation was to facilitate, and simplify the sharing of data over the

internet. It uses Tags and Elements to define data. It is extensively used among

enterprise.

XSD (XML Schema Definition)

XML Schema Definition is a document with the objective to formally provide

descriptions of the elements of an Extensive Markup Language (XML). It is used to

verify if the content of a XML document is according to a specific format and follows a

set of rules, in order to classify the document as valid o invalid.

XSLT (Extensible Stylesheet Language Transformations)

Extensive Styleshheet Language Transformations is a language meant for transforming

XML documents into other XML documents with a different structure or/and model,

through the definition of rules. The transformation can also occur from XML to other

formats such as plain text and HTML. It makes use of Xpath to query and extract data

from input’s nodes.

XPATH

Xpath is a language used to specify parts of a XML document. It is based on node

querying through paths. (ex. /bookstore/book) and brings a set of expressions and

predefined functions. Usually used along XSLT to support data tree transformation.

JSON

JSON stands for Javascript Object Notation and is a lightweight data format. JSON was

developed on early 2000s with the objective to solve a problem of transferring

Javascript data through and HTML document, that are both easy to read and write by

Humans, and easy to parse and generate by machines. [24][25][26]. It has since gained

worldwide interest by companies and creators due to its potential for stateless

State of Art

 41

integration and data exchange between systems to the point of replacing XML. In

October 2013, Ecma issued the first edition of its JSON Standard ECMA-404.

Figure 31- Stack OverFlow Trends - json vs xml

JSON Schema

JSON Schema is the equivalent of XSD for JSON. It allows to describe JSON data

formats, using an easily readable JSON file, allowing JSON data validation. This is

useful to ensure that data instances are following a certain structure with the correct data

types, in order to avoid poor data quality and errors during processing.

Service Bus/Message Broker Implementation

Implementations of message Broker, or service buses, support the messaging patterns

explained beforehand, point-to-point and publish/subscribe, and are used to share

messages between systems asynchronously and a few examples are RabbitMQ, Amazon

SQS and Azure Service Bus. Despite having their difference, they share most concepts

[31].

Service buses do have a queue concept, which is based on a first-in first-out basis, are

optimized to read from it. This fits under the previously noted point-to-point

connection, under Background Analysis, in which there can be multiple publishers and

a subscriber. Multiple subscribers can also be set up to compete for the messages.

Data is temporary under these implementations which means, they are stored for a

specific, limited time or until read, without any purpose of long-term storage.

Service buses also have a publish/subscribe concept, that may be implemented in

different ways, consisting of a temporary set of messages published by one or more

published, and read by one or more subscribers. Subscribers do not compete against

each other to read messages from the same topic, each one holding a copy.

Service Buses do support routing.

Chapter 3

 42

Event Streaming Platform - Kafka

Kafka is a scalable publish-subscribe messaging system design surrounding a

distributed log. It is focused on a high throughput where data is stored in log files [32].

Kafka logs store all the data received by appending it and have its data stored

permanently, allowing for multiple reads

Kafka does not have a concept of queue or point-to-point messaging and relies solely on

a publish-subscribe paradigm which is named topics. Topics are made of zero or more

partitions which are setup when the topics are created. Partitions are sets of data

received by the topic and are meant to allow parallelism as each consumer reads from a

partition, however, a partition can only be read by one consumer by each consumer

group at a time. Each time partitions are modified, or new subscribers are introduced,

Kafka readjusts which subscriber consumes from which partition on a round-robin basis

to readjust load within consumer groups.

Figure 32- Kafka publish/subscribe with one subscriber

Figure 33- Kafka publish/subscribe with two subscribers

State of Art

 43

Figure 34- Kafka publish/subscribe with two consumer groups

One feature kafka lacks is the ability to support routing.

Chapter 3

 44

3.5. Overall Analysis
This section will be used to provide a brief overview of the different solutions and

technologies and a few of their benefits and disadvantages.

 Microsoft
Biztalk

Boomi
AtomSphere

 Workato

Functionalities Integration of

Different

Systems

Integration of

Different

Systems

 Integration of

Different

Systems

Cloud Functionality on-premises On-cloud with

on-premises

extension

 On-cloud with

on-premises

extension

Language/Framework .Net Java -

Compatibility OS Windows Windows, Linux Linux,

Windows, Mac

OS, Windows

Server

Internal Messaging Language XML - JSON-like

Datapills

Connection Types Allowed [10] [15] [27]

Allows Business Rules? Yes Yes Yes

Document Type Supported XML, JSON, Flat

File, Database

XML, JSON, Flat

File, Database

and EDI

 XML, JSON, Flat

File, Database

Data/Messaging Sharing

The moment data gets inside a Message Broker through an endpoint, it needs to share

data across the different elements of the system such as Shapes. The way the data is

shared between those elements may vary and depend on the way the system is

structured. For instance, Microsoft’s Biztalk Server separates the system in 3 different

parts or layers, the Messaging Layer, the Orchestration Layer and the Databases Layer,

and the way these separate layers communicate with each other is via a

publish/subscribe paradigm and a common language. This methodology is positive

when it comes to modularization, as it allows different parts, for instance, to be run on

State of Art

 45

different systems, and communicate via messaging, is less positive, however, in

situations we want to track or predict the progress or path of a message as it does not

have a fixed flow or path and implementation can be complex.

Boomi has a more Linear approach. Since the different integrations are modularized in

smaller, self-contained processes and the different Shapes are connected to one another,

it passes the documents (data) from Shape to Shape. This allows a more predictive flow

of documents and eases tracking and logging. Boomi has no internal data language and

therefore passes the documents from Shape to Shape in the data format of the previous

Shape it came from, this increases the likelihood of error as the user must remember to

always parse into the data format necessary before any processing.

Workato has a json-like internal language, datapills, and has also a Linear Approach

when it comes to Actions Flow. Modularized and adept of smaller integrations

(Recipes), workato Actions have data outputs, that are stored as their datapills. This is

better than Boomis’ as it allows Actions to refer to data from any previous Action,

making it easier and error prone for the user to reuse data and making it better for the

logging system to store the data flow and contents of each step.

Data Consistency

First point to consider is data flow consistency. Both Microsoft and Workato use a

common internal data type to communicate between their inner actions. For instance,

when Biztalk receives messages from an endpoint, it parses the message into XML, and

XML is then used for transformation and other features. Workato, once it receives data

by a connector, it automatically parses the received data into an expected json-like

common data structure, the datapill, and the data is then all accessed and referenced via

those datapills. This makes easier for the user to know what data type and format to

expect, and an universal way to reference it. Boomi, however, once it receives data it

does not parse the information and the data flows from Shape to Shape with the exact

format from the previous one. This increases the likelyhood of human error as data has

to be parsed manually on the flow, and be remembered Shapes ahead when data needs

some kind of processing.

Data Language

As seen above, it is beneficial to have an internal language as having a common data

language allows for easier data referencing and mapping as it is known what data is

expected. Two possible language choices for data storage and usage are XML and

JSON.

XML was designed to be a markup language, and despite being used for data exchange

it is not the most efficient way of doing so as it is more complex and due to its nature of

tag usage, data redundancy is vastly present and it can rapidly increase the size of each

message. JSON on the other hand is a lightweight language designed for data sharing.

Easily parseable and human readable, JSON is the best approach.

Deployment

This second point to consider is deployment. Microsoft’s Biztalk is designed to be an

on-premise solution only, which implies the owner/user of the product has to install,

Chapter 3

 46

maintain, configure and update all the infrastructure with it. This can be expensive, and

time-consuming. On-premises, allows however, for access to local applications and

databases without having to have an API open for external access. Dell’s Boomi is

cloud native, meaning the users can create integrations from anywhere on the go on the

cloud without using local resources, via their application, causing the data storage and

Processing are Boomi’s responsibility. Boomi offers, however, an option to download

the patented Atoms to premise, and run them locally, so users, can access local

applications in their integrations via their processes. Workato also provides both

Application integration on cloud and on-premises. Workato uses a concept of Agents,

that can be downloaded and run on-premises to create a connection with the cloud

integration, so that the company can access internal applications without opening ports

for that.

On-premises functionalities may be a plus, however, for cases that companies use cloud

storage and services, and for integration between business APIS, hosting a cloud service

may be beneficial.

Scalability

Scalability is an important matter when it comes to integration. Over times companies

increase their partners and information exchange and amount of data shared increases

proportionally with the partners integrated. Being scalable is the ability to deal with

increasing integrations and data associated. When it comes to Biztalk, Biztalk can use a

concept of Host, in which a host contains/is associated with the different elements such

as adapters and orchestrations and can be run separately on different machines.

Figure 35- Host Concept

The example shows how orchestration instances and adapters are run on different host

instances and different machines. Host instances are Windows Services.

Boomi’s processes can be run on Atoms, their patented lightweight, dynamic runtime

engine, and the nature of small integrations allow breaking several business integrations

into smaller ones, and then run separately. Not to mention from a user point of view,

they do not need to run locally all Atoms.

Workato is based on cloud and the on-premises connection is made using Agents.

Agents provide a WebSocket tunnel to the workato platform, to access local

State of Art

 47

applications, allowing multiple Agents together into on-prem groups to share/balance

load.

Broker Messaging Support

When it comes to developing a broker’s architecture one must consider possible

messaging systems to support it. Service buses have point-to-point implementations

which are an important when considering a few features. For instance, messages may

need to be consumed only once even when there are more than one consumer, which is

applied, for instance, in load balancing, as multiple consumers, in different systems can

be reading from the same queue, sharing processing needs. Point-to-point

implementations also allow data to be processed in a ordering manner as long as there is

only one consumer, as the moment consumer number increases above one, if one

consumer fails the processing or takes long enough processing a message, it may not be

processed in an orderly fashion. Also limiting one consumer may cause a performance

drop and incapacity to grow and expand the system, meaning it may not be ideal where

ordering and scalability is fundamental. Despite kafka not supporting queueing, ordered

processing of the messages can be accomplished, equally, by using a single consumer

and topic, which is not ideal, as it has the scalability drawback, but scalability can be

assured if we consider the increase of partitions number along with consumers number

within a consumer group, needing however a hashing mechanism to guarantee that all

related messages are sent to a single partition based on a characteristic such as id but

complexity and maintenance makes it also not ideal. Another point to consider, for

instance, is the fact that, updating the number of partitions to increase scalability, affects

the hash partitioning and therefore may cause a partition to have data that should not

belong there anymore.

A point to consider is the fact Kafka was also developed to store all the data received

permanently, and more appropriate for data revisit and real-time processing and

analysis, which is not the most essencial feature for a message broker, on the other hand

a service bus holds data temporarily and is naturally consumed when sucessfully read,

this makes the broker more of a transient message delivery system rather than a

message storage. Information that requires storage can be stored in an SQL database,

such as logs.

Chapter 4

 48

Chapter 4
Requirements

State of Art

 49

Chapter 4

 50

Implementation

 51

Chapter 5
Implementation

Chapter 5

 52

Implementation

 53

Chapter 5

 54

 55

References

[1] Alfred D. Chandler, Jr. Strategy and Structure: Chapters in the History of the

American Industrial Enterprise: MIT Press, 1969.

[2] What is ERP, Oracle. Accessed on: Dec. 18, 2021. [Online]. Available:

https://www.oracle.com/erp/what-is-erp/#link2

[3] Message Brokers, IBM. Accessed on: Dec. 18, 2021. [Online]. Available:

https://www.ibm.com/cloud/learn/message-brokers

[4] Vivek Kale, Guide to Cloud Computing for Business and Technology Managers: CRC

Press, 2014.

[5] Liam Quin, Extensive Markup Language (XML). Accessed on Dec. 18, 2021. [Online].

Available:

https://www.w3.org/XML/#intro

[6] XML Schema. Accessed on Dec. 18, 2021. [Online]. Available:

https://en.wikipedia.org/wiki/XML_schema#:~:text=Two%20more%20expressive%20XML

%20schema%20languages%20in%20widespread,XML%20document%20itself%2C%20or%2

0via%20some%20external%20means.

[7] David C. Fallside and Priscilla Walmsley, XML Schema Part 0: Primer Second

Edition. Accessed on Dec. 18, 2021. [Online]. Available:

https://www.w3.org/TR/xmlschema-0/

[8] Michael Kay, XSL Transformations Version 3.0. Accessed on Dec. 18, 2021. [Online].

Available:

https://www.w3.org/TR/xslt-30/#what-is-xslt

[9] Norman Walsh and Anders Berglund and John Snelson, XQuery and XPath Data

Model. Accessed on Dec. 18, 2021. [Online]. Available:

https://www.w3.org/TR/xpath-datamodel-30/#intro

[10] Mandi Ohlinger and Kent Sharkey and Saisang Cai (02, February 2021). Biztalk

Documentation. Accessed on Dec. 18, 2021. [Online]. Available:

https://docs.microsoft.com/en-us/biztalk/core/runtime-architecture

[11] Mandi Ohlinger and Kent Sharkey and Saisang Cai and Venu (02, February 2021).

Biztalk Server Message. Accessed on Dec. 18, 2021. [Online]. Available:

https://docs.microsoft.com/en-us/biztalk/core/the-biztalk-server-message

[12] Mandi Ohlinger and Kent Sharkey and Saisang Cai (02, February 2021). Lifecycle of a

Biztalk Message. Accessed on Dec. 18, 2021. [Online]. Available:

https://www.oracle.com/erp/what-is-erp/#link2
https://www.ibm.com/cloud/learn/message-brokers
https://www.w3.org/XML/#intro
https://en.wikipedia.org/wiki/XML_schema#:~:text=Two%20more%20expressive%20XML%20schema%20languages%20in%20widespread,XML%20document%20itself%2C%20or%20via%20some%20external%20means
https://en.wikipedia.org/wiki/XML_schema#:~:text=Two%20more%20expressive%20XML%20schema%20languages%20in%20widespread,XML%20document%20itself%2C%20or%20via%20some%20external%20means
https://en.wikipedia.org/wiki/XML_schema#:~:text=Two%20more%20expressive%20XML%20schema%20languages%20in%20widespread,XML%20document%20itself%2C%20or%20via%20some%20external%20means
https://www.w3.org/TR/xmlschema-0/
https://www.w3.org/TR/xslt-30/#what-is-xslt
https://www.w3.org/TR/xpath-datamodel-30/#intro
https://docs.microsoft.com/en-us/biztalk/core/runtime-architecture
https://docs.microsoft.com/en-us/biztalk/core/the-biztalk-server-message

Chapter 5

 56

https://docs.microsoft.com/en-us/biztalk/core/lifecycle-of-a-message

[13] Mandi Ohlinger and Kent Sharkey and Saisang Cai (02, February 2021). The

MessageBox Database. Accessed on Dec. 18, 2021. [Online]. Available:

https://docs.microsoft.com/en-us/biztalk/core/the-messagebox-database

[14] Boomi, Boomi Integration and iPaaS. Accessed on Dec. 18, 2021. [Online].

Available:

https://help.boomi.com/bundle/integration/page/c-atm-Integration_and_iPaaS.html

[15] Boomi, Boomi Technology Connectors. Accessed on Dec. 18, 2021. [Online].

Available:

https://help.boomi.com/bundle/connectors/page/c-atm-Technology_connectors.html

[16] Boomi, Boomi Getting Started. Accessed on Dec. 18, 2021. [Online]. Available:

https://help.boomi.com/bundle/integration/page/c-atm-Getting_started.html

[17] Boomi, Boomi Essentials Training. Accessed on Dec. 18, 2021. [Online]. Available:

https://train.boomi.com/courses/2304d0ac-b9fa-4c43-af4a-f2851285dfc2#5d04f307-de4f-

4153-9281-2d484276bb85

[18] W3Schools, Stored Procedure. Accessed on Dec. 18, 2021. [Online]. Available:

https://www.w3schools.com/SQL/sql_stored_procedures.asp

[19] Workato, Workato LinkdIn: About. Accessed on Dec. 18, 2021. [Online]. Available:

https://www.linkedin.com/company/workato

[20] Workato EverybodyWiki. Accessed on Dec. 18, 2021. [Online]. Available:

https://en.everybodywiki.com/Workato

[21] Workato. Getting Started. Accessed on Dec. 18, 2021. [Online]. Available:

https://docs.workato.com/getting-started.html#getting-started

[22] Workato. If Conditions. Accessed on Dec. 18, 2021. [Online]. Available:

https://docs.workato.com/features/if-conditions.html#if-conditions

[23] Workato. Recipe Jobs. Accessed on Dec. 18, 2021. [Online]. Available:

https://docs.workato.com/recipes/jobs.html#viewing-details-for-a-specific-job

[24] Introducing JSON. Accessed on Dec. 18, 2021. [Online]. Available:

https://www.json.org/json-en.html

[25] Martin Drapeau (2018, October 6). Our Friends CSV and JSON. Accessed on Dec. 18,

2021. [Online]. Available:

https://medium.com/@martindrapeau/the-state-of-csv-and-json-

d97d1486333#:~:text=JSON%20was%20created%20by%20Douglas%20Crockford%20in%2

https://docs.microsoft.com/en-us/biztalk/core/lifecycle-of-a-message
https://docs.microsoft.com/en-us/biztalk/core/the-messagebox-database
https://help.boomi.com/bundle/integration/page/c-atm-Integration_and_iPaaS.html
https://help.boomi.com/bundle/connectors/page/c-atm-Technology_connectors.html
https://help.boomi.com/bundle/integration/page/c-atm-Getting_started.html
https://train.boomi.com/courses/2304d0ac-b9fa-4c43-af4a-f2851285dfc2#5d04f307-de4f-4153-9281-2d484276bb85
https://train.boomi.com/courses/2304d0ac-b9fa-4c43-af4a-f2851285dfc2#5d04f307-de4f-4153-9281-2d484276bb85
https://www.w3schools.com/SQL/sql_stored_procedures.asp
https://www.linkedin.com/company/workato
https://en.everybodywiki.com/Workato
https://docs.workato.com/getting-started.html#getting-started
https://docs.workato.com/features/if-conditions.html#if-conditions
https://docs.workato.com/recipes/jobs.html#viewing-details-for-a-specific-job
https://www.json.org/json-en.html
https://medium.com/@martindrapeau/the-state-of-csv-and-json-d97d1486333#:~:text=JSON%20was%20created%20by%20Douglas%20Crockford%20in%202001%E2%80%932002,a%20JavaScript%20object.%20It%20looked%20something%20like%20this%3A
https://medium.com/@martindrapeau/the-state-of-csv-and-json-d97d1486333#:~:text=JSON%20was%20created%20by%20Douglas%20Crockford%20in%202001%E2%80%932002,a%20JavaScript%20object.%20It%20looked%20something%20like%20this%3A

 57

02001%E2%80%932002,a%20JavaScript%20object.%20It%20looked%20something%20like

%20this%3A

[26] Two Bit History (2017, September 21). The Rise and Rise of JSON. Accessed on Dec.

18, 2021. [Online]. Available:

https://twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html

[27] Workato. Workato Connectors. Accessed on Dec. 18, 2021. [Online]. Available:

https://docs.workato.com/connectors.html

[28] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns. Addison-Wesley

Professional: 2004.

[29] Matt Milner, PluralSight Learn BizTalk. Accessed on Dec. 18, 2021. [Online].

Available:

https://www.pluralsight.com/blog/it-ops/learning-path-biztalk

[30] Bill Wagner and Rodrigo C. M. Santos and Kent Sharkey and David Coulter and Ben

Newcomb and Genevieve Warren and David Pine and Nick Schonning and Scott Addie and

Petr Kulikov and Maira Wenzel and Youssef Victor and Luke Latham and Petr Onderka. A

tour of the C# language. Accessed on Dec. 18, 2021. [Online]. Available:

https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/

[31] Eran Stiller. RabbitMQ vs. Kafka: An architect’s dilemma. Accessed on Dec. 18,

2021. [Online]. Available:

https://betterprogramming.pub/rabbitmq-vs-kafka-1ef22a041793

[32] Philippe Dobbelaere and Kyumars Sheyk Esmaili. Kafka versus RabbitMQ: A

comparative study of two industry reference publish/subscribe implementations: Industry

Paper. Association for Computing Machinery: 2017

[33] Boomi Community. How long are the process reporting logs kept? And, can the

duration be changed?. Accessed on Dec. 18, 2021. [Online]. Available:

https://community.boomi.com/s/question/0D51W00006As07QSAR/how-long-are-the-

process-reporting-logs-kept-and-can-the-duration-be-changed

[34]

https://medium.com/@martindrapeau/the-state-of-csv-and-json-d97d1486333#:~:text=JSON%20was%20created%20by%20Douglas%20Crockford%20in%202001%E2%80%932002,a%20JavaScript%20object.%20It%20looked%20something%20like%20this%3A
https://medium.com/@martindrapeau/the-state-of-csv-and-json-d97d1486333#:~:text=JSON%20was%20created%20by%20Douglas%20Crockford%20in%202001%E2%80%932002,a%20JavaScript%20object.%20It%20looked%20something%20like%20this%3A
https://twobithistory.org/2017/09/21/the-rise-and-rise-of-json.html
https://docs.workato.com/connectors.html
https://www.pluralsight.com/blog/it-ops/learning-path-biztalk
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://betterprogramming.pub/rabbitmq-vs-kafka-1ef22a041793
https://community.boomi.com/s/question/0D51W00006As07QSAR/how-long-are-the-process-reporting-logs-kept-and-can-the-duration-be-changed
https://community.boomi.com/s/question/0D51W00006As07QSAR/how-long-are-the-process-reporting-logs-kept-and-can-the-duration-be-changed

Chapter 5

 58

 59

Appendix

Chapter 5

 60

 61

Appendix A

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut

labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco

laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in

voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat

non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Chapter 5

 62

 63

Appendix B

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut

labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco

laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in

voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat

non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Chapter 5

 64

